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ABSTRACT
The global response to the pandemic introduced by COVID-19 is
unprecedented. Scientists develop methods, which analyze data to
identify an effective treatment that uncovers possible responses
to the SARS-COV-2 virus. However, our global response should
be based on knowledge exchange and collaboration among coun-
tries. In this paper, we present a recommender system for treat-
ment recommendations, which exploits similar patterns among
patients of different clinical studies, and recommends them health
interventions (such as to provide oxygen therapy) and drugs (e.g.,
Remdesivir) based on their symptoms’ or diseases’ similarity with
patients of other similar clinical studies. Our approach can also
provide explanations along with recommended treatments to assist
doctors in understanding the reasons behind a suggested drug or
health intervention. We also perform experiments to identify the
effectiveness of our system in terms of recommendation accuracy.
Our results demonstrate that our system is able to minimize the
false positive and false negative prediction rates. Finally, we provide
web links to download both (i) our program’s setup and (ii) our
Neo4j database.
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1 INTRODUCTION
World-leading scientists and health experts are developing ap-
proaches to treat and protect people, and to prevent the COVID-19
disease from spreading. Continuously new treatments are devel-
oped to minimise symptoms in coronavirus patients or to reduce
the duration of treatments in hospitals.

In this paper, we therefore present a recommender system which
collaboratively identifies similar patterns between patients of differ-
ent clinical studies and recommends suitable treatments (i.e., drugs
and health interventions) for patients. The data used for demon-
strating this approach is derived from the COVID-19 pandemic.
Treatment recommendations are based on similarities between
patients in different clinical studies and explanations are derived
thereof to justify treatment suggestions.

While Artificial Intelligence (AI) could assist medical doctors
in many ways, it is unlikely to replace them in the foreseeable
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future. To this end, our recommender system tries to assist doctors
by providing them supplementary drug and health intervention
recommendations along with explanations based on similar clinical
studies. Obviously, medical doctors may not be always aware of all
different medication and health interventions taking place around
the Globe, due to rapid evolving of the pandemic. In contrast, our
recommendation system can be continuously updated with medical
data from recent clinical studies.

Our recommendation system runs on multi-dimensional graph
data consisting of different participating entities (i.e. patients, drugs,
diseases, etc.). In particular, our system runs on a Heterogeneous
Information Network (HIN) and uses meta paths to infer similarities
among entities. Ameta path is a sequence of different node and edge
types, which capture a specific relation among graph entities. For
example, the meta path (Disease-Patient-Disease or else DPD) can
be used to infer similarities among diseases based on the patients’
co-disease Electronic Health Records (EHRs). Our system is capable
of providing explanations along with the recommended health
treatments based on the aforementioned meta paths. Thus, it can
better assist doctors to understand the hidden health correlations
behind a suggested drug or intervention.

The paper is organized as follows. Next Section 2 presents the
characteristics of the COVID-19 medical data set [2]. Section 3 and
4 present our proposed algorithm, and recommender system, re-
spectively. Experimental results are presented in Section 5. Section
6 discusses the main challenges for our system and how we can
deal with them. Finally, Section 7 concludes the paper.

2 THE COVID-19 GRAPH DATA
We have imported the data from the covidanalytics.io1 website [2]
into the Neo4j database as shown in Figure 1. You can download
our Neo4j database by using the following link:

https://1drv.ms/u/s!Art-9FhwVCHJh5U8rNsIQgvc117bIA?e=rvnK4A

The covidanalytics dataset contains the following data columns:
• Clinical study : Id, Sub-id, Country, Population
• Prevention-life style : Smoking history, Current drinker
BMI, Obesity, Any Comorbidity.

• Symptoms : Fever (temperature 37·38 celcius), Average tem-
perature (celsius), Max temperature (celsius), Respiratory
rate > 24 breaths per min, Cough, Shortness of Breath (dysp-
noea), Headache, Sputum (/Expectoration), Myalgia (Muscle
Pain), Fatigue Upper air-way congestion, Diarrhoea, Nausea
or Vomiting, Loss of Appetite/Anorexia, Sore Throat/Stuffy,
Nose Chills, Chest Pain, Loss of smell/taste.

• Diagnoses : Hypertension, Diabetes, Cardiovascular, Dis-
ease (incl. CAD), Chronic obstructive lung (COPD), Cancer
(Any), Liver Disease (any), Cerebrovascular Disease, Chronic
kidney, Renal Disease, Other.

1https://www.covidanalytics.io/dataset

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: The network schema of our COVID-19 tripartite graph.

• Drugs : Antibiotic, Antiviral (Any), Uses Kaletra, (lopinavir/ri-
tonavir), Uses Favipiravir, Uses Tamiflu (oseltamivir), Uses
Remdesivir, Uses Umifloprit, Uses Arbidol (umifenovir), Uses
Hydroxychloroquine and/or Chloroquine, Corticosteroid (in-
cluding Glucocorticoid, Methylprednisolone).

• Health Interventions : Nasal Cannula High-flow Nasal
Cannula, Oxygen therapy, Noninvasive Mechanical Ventila-
tion, Invasive Mechanical Ventilation, ECMO, Renal Replace-
ment Therapy, Interferon Alpha-1b, Thymalfasin and/or Thy-
mosin.

• Unwanted side effects : Sepsis, Respiratory Failure or ARDS,
Respiratory Failure ARDS, Hypoxemia, Heart Failure, Septic
Shock / Shock, Liver Lysfunction, Coagulopathy, Acute Car-
diac Injury, Acute Kidney Injury (AKI), Secondary Infection/
Bacterial Infection, Hypoproteinaemia, Acidosis.

• Survivorship: ICU admission, discharged (%), ICU length
of stay (days), hospital length of stay (days), days to viral
clearance (Median), mortality.

Henceforth, we group some categories from the aforementioned
ones as follows: (i) “Symptoms” and “Diagnoses” are together con-
sidered as “Diseases” and (ii) “Drugs” and “Health Interventions”
are together considered as “Treatment”.

In our graph, we have 538 (main- and sub-clinical Studies) (S), 19
different Treatments (drug or health interventions) (T) for COVID-
19 and 28 Diseases (symptoms or underlying chronic diseases) (D).
As it is shown in Figure 1, we have imported all relationships among
the aforementioned three entities (S, T, D), which results in 17,590
relationships of type S → T (the treatment that was provided to
patients of a clinical study) or type T → D (the treatment protocol
which is followed for a given list of diseases/symptoms). Thus, the
network structure of our graph, as shown in Figure 1, is Clinical
Study – Treatment – Disease, i.e., S → T → D, as can be shown
on the bottom right of Figure 1, with the orange, red, and blue
node, respectively. Our graph consists of 585 nodes (538 main- and
sub-clinical study nodes + 19 treatment nodes + 28 patient disease

and symptom nodes). There are also two types of links (ST and
TD). ST represents the fact that the patients of a clinical study were
prescribed a list of drugs (e.g., Remdesivir, Hydroxochloroquine,
etc.) or were provided a list of health interventions (e.g., to get an
oxygen therapy, admission in ICU, etc.), whereas TD represents the
treatment that should be followed given specific patients’ symptoms
and their possible underlying chronic diseases (diabetes, cancer,
etc.).

3 THE PATHSIM SIMILARITY MEASURE
In this Section, we describe the PathSim similarity measure used
in our system that is inspired by the work of Sun et al. [10]. They
proposed the novel idea of measuring similarities between network
objects by analysing meta-paths, through which objects are con-
nected. In a heterogeneous network, two objects can be connected
through different paths as defined in the following:

Definition 3.1. Information Network. [10] An information net-
work is defined as a directed graph G = (V, E) with an object type
mapping function 𝜙 : V → Q and a link type mapping function
𝜓 : E → R, where each object 𝑣 ∈ V belongs to one particular object
type 𝜙 (𝑣) ∈ Q, and each link 𝑒 ∈ E belong to a particular relation
𝜓 (𝑒) ∈ R.

For instance, in the network schema depicted in Figure 1 two
treatments can be connected through the path “Treatment-Disease-
Treatment” , or “Treatment-Disease-Treatment-Disease-Treatment”
(collaborative filtering similarity). Using different paths, different
similarities are observed. These paths are called meta paths and are
formally defined as follows:

Definition 3.2. Meta Path. [10] A meta path P is a path defined
on the graph of network schema 𝑇𝐺 = (Q,R), and is denoted in the

form of 𝑄1
𝑅1−−→ 𝑄2

𝑅2−−→ ...
𝑅𝑙−−→ 𝑄𝑙+1, which defines a composite

relation 𝑅 = 𝑅1 ◦ 𝑅2 ◦ ... ◦ 𝑅𝑙 between type 𝑄1 and 𝑄𝑙+1, where ◦
denotes the composition operator on relations.
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Figure 2: The similarity search and exploration task.

There are various meta paths that can be built based on the clin-
ical Study-Treatment-Disease (STD) network structure of Figure 1.
If we start from a treatment node, we can build the following paths:
TDT, TST, etc. If we start from a disease node, we can build meta
paths: DTD, DTSTD, etc. to recommend treatments based on similar
diseases.

The meta path framework provides a powerful mechanism for a
doctor to select the appropriate similarity semantics by choosing
a proper meta path. A well-known similarity measure that is able
to capture the semantics of similarity among network objects is
PathSim [10]. Another variation of PathSim was proposed by Sun
et al. [8] for predicting future links (e.g., future collaborations or
co-authorships) among researchers. In particular, they proposed
PathCount [8], which measures the number of path instances
between two objects following a given meta path. Recently, Behrens
et al. [1] proposedMetaExp, a systemwhich is based on the PathSim
algorithm to infer similarity among entity nodes using meta paths.

3.1 Meta Path-based Similarity
Definition 3.3. PathSim: A Single Meta path-based similar-

ity measure [10]. Given a symmetric meta path P, PathSim between
two objects of the same type 𝑥 and 𝑦 is

𝑠 (𝑥, 𝑦) =
2 ∗ |𝑝𝑥{𝑦 : 𝑝𝑥{𝑦 ∈ 𝑃 |

|𝑝𝑥{𝑥 : 𝑝𝑥{𝑥 ∈ 𝑃 | + |𝑝𝑦{𝑦 : 𝑝𝑦{𝑦 ∈ 𝑃 | , (1)

where 𝑝𝑥{𝑦 is a path instance between 𝑥 and𝑦, 𝑝𝑥{𝑥 is that between
𝑥 and 𝑥 , and 𝑝𝑦{𝑦 is that between 𝑦 and 𝑦.

PathSim similarity measure overcomes problems of similarity
inference in graphs. That is, Jeh and Widom [3] proposed SimRank
based on the idea that two nodes are similar if they are referenced
by similar nodes. Moreover, the Random Walk with Restart (RWR)
(a.k.a. P-PageRank) algorithm [4–6, 9], which is a variation of the
well-known PageRank algorithm, has properties, that capture also
the notion of nodes’ similarity in a heterogeneous graph. However,
both of the aforementioned algorithms are biased towards those
nodes that have high node’s degree (i.e., nodes with many links
to other nodes). In contrast to SimRank and P-PageRank (RWR),
which favour more popular items in the network, PathSim is able
to capture the nodes’ visibility in the network, bringing the nodes
that share similar visibility closer.

4 THE PROPOSED RECOMMMENDER
SYSTEM

Our recommender system is designed in the .Net framework 4.8
and connects to a Neo4j database through the official neo4j.driver
1.7.2. It consists of two different components: (i) Similarity Search,
Exploration and Reasoning and (ii) Treatment Recommendation.
You can download the installation of the desktop application with
the following link:

https://1drv.ms/u/s!Art-9FhwVCHJh5U_qN1hqwdP_lvFQA?e=uyBpNr

https://1drv.ms/u/s!Art-9FhwVCHJh5U_qN1hqwdP_lvFQA?e=uyBpNr
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Figure 3: The Treatment Recommendations for COVID-19.

4.1 Similarity Search, Exploration and
Reasoning Component

In this Section, we describe how the first component of our system
can be used as an exploratory tool to assist doctors in identifying
similar patterns among different clinical studies. In particular, when
a physician clicks the button [Load Data], as it is shown on the left
top side of Figure 2, our system reads abstractly from the COVID-19
graph database all the different type of nodes, and relationships.

Then, as shown in the drop box of Figure 2, our system identifies
meta paths of length 1 (i.e., STS, TST, TDT, DTD) and meta paths
of length 2 (STDS, DTSD) in the graph. When the doctor selects
the meta path that he wants to semantically explore (e.g., STS), the
system loads all possible instances for each entity that participates
in the relationships of the selected meta path.

For instance, as shown in Figure 2, let us assume that we want to
analyze the similarity patterns between the patients of the clinical
studies with id 10_10 and 10_20 from the covidanalytics website [2]
and then click the similarity search button to explore their similar-
ity in terms of their common treatments (i.e., meta path STS). Please
note that we consider all the drugs and health interventions that
the patients of both clinical studies have in common as “common
treatment”. Based on the PathSim algorithm [10] (see Figure 2) we
compute the predicted similarity between patients of the two clini-
cal studies equal to 0,8889 based on their common treatment (i.e,.
the drugs they were prescribed and the health interventions which
took place during their hospitalization). Then, by clicking on this
value we exploit the predicted degree of similarity as an explanation,
where all the instances that connect the patients of the two clinical
studies in terms of their treatment are considered (see Figure 2). As
shown, the patients of the clinical study 10_10 are connected with
the patients of the clinical study 10_20 with 8 instances of the meta
path STS (study-treatment-study). As indicated in Figure 2, they
received in both studies Antibiotics, Antiviral medication, Kaletra,
etc. In addition, patients of both clinical studies had common health

interventions such as High-flow Nasal Cannula, Oxygen Therapy
and Mechanical Ventilation. Based on the aforementioned meta
path-based explanations, we expect that doctors can understand
in a more transparent way, what are the latent health correlations
between the two - under comparison - or even more clinical studies.

4.2 Drug and Health Intervention
Recommendations Component

In this Section, we describe how the second component of our
system can provide treatment recommendations for the patients of
a target clinical study. As it is shown in Figure 3, we recommend
to the patients of the clinical study with id 10_20, a list of top-
8 recommended drugs and health interventions (i.e., treatment
recommendations) based on the User-based Collaborative Filtering
(UBCF) algorithm [7] (i.e., by using metapath STS) and by taking
under consideration the similarity of the target clinical study 10_20
with its neighbor clinical studies (i.e., those clinical studies which
have in common with the target clinical study at least 5 drugs
or health interventions). That is, given a target clinical study, a
Collaborative Filtering algorithm will identify their neighbourhood
of similar clinical studies.

In particular, we recommend to the patients of the clinical study
to get Oxygen therapy, Nasal cannula, Renal replacement therapy,
and ECMO. We also recommend them to get drug combinations
such as Hydroxychloroquine, Arbidol umifenovir, and Interferon
Alpha-1b, ranked based on a given score, as it is shown on the
bottom left side of Figure 3.

5 EXPERIMENTAL EVALUATION
In this Section, we perform experiments with the goal to evaluate
the treatment suggestions of our system to the patients’ studies.
We have followed a 5-fold cross validation protocol and created
80-20 train-test splits of the treatments (i.e., drugs and health inter-
ventions) that where given/followed to each patient study.
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5.1 Balancing data between positive and
negative examples

For a fair and coherent evaluation protocol, all link connections
between a patients’ study and a treatment will act as our positive
examples, but we’ll also need to create some negative examples.
Most real-world networks are sparse, with a small number of rela-
tionships among graph entities. In our case, the graph properties
are not different. The number of examples between a patients study
and a treatment node that do not have a relationship is much larger
than the number that do have a relationship. If we had used all
the negative examples to train our model, we would have a severe
class imbalance problem. In other words, a model could achieve
extremely high accuracy by predicting that every pair of study-
treatment nodes does not have a relationship. To overcome this
problem, we have selected a balanced number of positive and neg-
ative examples. In particular, for the train set, for every positive
example, we have selected one negative example to train our model,
resulting to 1294 instances for the positive and 1294 instances for
the negative samples. For the test set, we followed the same pro-
cedure resulting to 325 instances for the positive samples and 325
instances for the negative samples.

5.2 Methods’ Comparison
In this Section, we compare the performance in terms of precision,
recall and AUC (Area Under Curve) of the following three models:

• Recommend treatments based on meta path STS (i.e., num-
ber of common treatments between two patients’ studies),
denoted asPathSimSTS. This model is the analogue of User-
based Collaborative Filtering [7].

• Recommend treatments based on meta path TSTS (i.e., num-
ber of paths that connect a patients’ study with a treatment
through any other patients’ study), denoted asPathSimTSTS.

• Recommend Popular Treatments by taking under considera-
tion the number of direct edges between a specific treatment
and all patients’ studies, denoted as POP.

Table 1 presents the methods’ performance in terms of accurate
recommendations on the Covid-19 data set. As shown in Table 1,
PathSimSTS outperforms PathSimTSTS in terms of precision,
which is equal to 1.0. That is, PathSimSTS is excellent at predict-
ing all the links that exist between a patient study and a treatment
(i.e., it predicts a zero number of false positives, and does not rec-
ommend unneeded drugs for the patients’ treatment). The main
reason that precision is so high, is the fact that the data set is dense
and there are not many treatments. They are just 19 to recommend.
In contrast, in recommender systems with thousands of movies the
recommendation task is much harder.

Model Covid-19 Data set
Precision Recall AUC

PathSimSTS 1.0 0.93 0.97
PathSimTSTS 0.70 0.96 0.54

POP 0.81 0.10 0.56
Table 1:Models’ comparison in terms of accuratemedication
recommendations.

PathSimSTS has also a very high recall equal to 0.93, which
means it is also good at predicting negative links i.e., those links
that do not exist and thus, it predicts only a few false negatives,
which results in recommending some drugs that are not needed for
patients’ treatment.

Please note that PathSimTSTS has the highest recall equal to
0.96. At this point, we highlight the fact that in healthcare, it is very
important to be able to correctly identify all those drugs that were
prescribed by the doctor. To this end, recall should be considered as
the more important metric than precision. For instance, youmay get
100% precision by just recommending a single drug, but at the same
time you may have missed to identify all other drugs which were
also prescribed (in reality) by the doctor for the patient’s treatment
(so you fail to recommend needed drugs).

Based on the confusion matrix, which counts true positives, true
negatives, false positives, and false negatives of drug recommen-
dations, we can also create the ROC curve for the three models,
against also the random model. ROC curve is a plot of the recall
(true positive rate) against the false positive rate of our predictions.
AUCmeasures the two-dimensional area underneath the ROC curve
from an X-Y axis (0,0) to (1,1).

Figure 4 visualizes the ROC curve performance of each method,
such that we can get an idea of the difference that exists between
PathSimSTS and the remaining models in terms of prediction
accuracy. As shown in Figure 4, PathSimSTS gets close to a 93%
true positive rate (recall), whereas its false positive rate reaches zero
0% (i.e., it predicts zero false positives and very few false negatives),
which is almost the ideal case. This is the reason that AUC for
PathSimSTS is so high (AUC = 0.97). The remaining comparison
partners are only a little bit better than random guess, which is
representedwith the dotted diagonal blue line in Figure 4 and attains
an AUC equal to 0.5. This is a clear indication that PathSimSTS is
the most successful model and STS is the most informative meta
path.

In summary, we note that our aim is to develop models to help
doctors screen all possible candidate treatments more comprehen-
sively to identify all relevant medicines for a target patient. To this
end, the final decision is always on the medical doctor’s side.

6 DISCUSSION
In our experiments, only one meta-path from the graph is incor-
porated to benefit the process of similarity calculation. However,
someone could argue that the similarity between two drugs should
come from more meta paths of the graph. To this end, we could
modify the original PathSim algorithm to consider the ratio of the
number of connections through which a candidate drug is con-
nected to the target patient compared to the average number of
connections of this type of meta path in the whole graph.

Moreover, in our experiments, we have not used a meta path
that takes under consideration the “Disease” type of node (i.e.,
Symptoms and Diagnoses). We note that in our experiments, we
further restricted the given information for the patients’ studies
profiles. That is, we assumed that we are able to predict the next
drugs to prescribe for a target patients’ study based only on the
drugs that were prescribed to them in the past. We assume that
since specific drugs are given to cure a list of diseases, then by
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Figure 4: True positive rate vs. false positive rate on the COVID-19 data set.

taking under consideration only the medicines that are included in
the Electronic Health Records of the patients, we can easily infer the
diseases that they may deal with even if we do not encode into our
model the sequence of diseases. Our assumption is verified, as we
can effectively derive accurate drug recommendations. However, we
should also perform experiments with meta paths that will include
the “Diseases” type of node, such that, we gain a better overview of
the patients’ conditions, which will probably result in an additional
improvement of the drug recommendations’ effectiveness.

Furthermore, someone could argue that the data set is very
small. It is true that for an effective decision making at regional,
national, and global levels, more relevant data on patient outcomes
are needed. Our system can be easily extended with any new addi-
tions in the current database. We hope that in near future, the covid
analytics dataset [2], which aggregates data now only from 160 pub-
lished clinical studies released between December 2019 and April
2020, will be extended with additional medical data information
from the COVID-19 pandemic.

Finally, our method is content agnostic and can be applied to
different recommendation tasks within the health care domain. That
is, our system is not only developed for the COVID-19 pandemic,
but the approach is also suitable for different scenarios with medical
cases, where different node types are present such as patients, drugs,
diseases, health interventions, and even unwanted side effects. For
instance, for capturing patient’s drug treatment, we would have a
graph consisting of Patients (P), who undergo a Treatment (T) using
Drugs (D) to target Genes (G) and may have side Effects (E). We can
provide a hybrid meta path-based explanation to a medical doctor
as follows: “We recommend for your patient drug D250, because: (i)
it was prescribed to 6 other Patients (who have diagnosed the same
disease with your patient) and took also similar Drugs with those of
your Patient’s current treatment (DTPTD), and (ii) It cures/targets

similar Genes together with 5 Drugs that your Patient has already
taken in his treatment (DGD)”.

7 CONCLUSIONS
We presented a recommender system for the COVID-19 pandemic,
which identifies similar patterns among patients of different clinical
studies, and recommends them treatments. Our system is also ca-
pable to provide explanations along with recommended treatments
to assist doctors to understand the reasons behind a treatment
recommendation. We performed experiments to identify the most
informative meta path with the goal to minimize the false positive
and negative prediction rates. As future work, we want to perform
a user study to understand the acceptance of our system to medical
doctors, and how these methods can actually influence real medical
healthcare pathways.
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